Overview of Population Dynamics

Richard Pettifor & Marcus Rowcliffe Institute of Zoology, ZSL SACWG/Darwin Initiative Project Training

What is "population dynamics"?

All populations fluctuate over time; population dynamics is the study of causes underlying these fluctuations.

Why study it?

- Conservation management
- Management of biological resources
- Because it's incredibly interesting!

Population dynamics is about flows

Net flows determine: *"population growth rate"*

Exponential growth

Logistic growth

Stochastic growth

WYTHAM GREAT TIT STUDY

- •Started by David Lack in 1947
- •Over 1000 nestboxes by 1963
- Intensively studied every year
- Demography known extremely well
- Environmental effects well known
- Numerous exptal studies
- Genetics well known
- Most adults & all yg ringed
- Immigrants known
- Poor handle on emigrants
- Sink popn

Wytham Great tit Time Series (r)

Blue & Great Tit Breeding Densities

A little history: are populations "regulated" or "limited"? Is the key factor determining population size:

1940/50's

Intrinsic, biotic (density dependence) (Nicholson & Lack) Extrinsic, environmental (Andrewartha & Birch)

Now Synthesis: both are important

Known Demographic & Environmental Effects in Great Tits

Survival of both Adults, Juveniles & Rate of Immigration from $Yr_n - Yr_{n+1}$ affected by Winter temp & Beech mast

CS, LD, Nestling Mass, Number Fledged & Recruitment All affected by *both* GT & BT breeding densities

i.e. Year on year Population Dynamics of great tits results from both Environmental & Demographic stochasticity

An example of environment / density interaction: the Soay sheep

Weather and density interact

Grenfell et al 1998

"Nothing in ecology makes sense except in the light of density dependence"

(W. Sutherland, after T. Dobzhansky)

Density dependence: simple models, complex dynamics

$$N_{t+1} = \frac{N_t r}{\left(1 + a N_t\right)^b}$$

$$N_{t+1} = \frac{N_t r}{\left(1 + a N_t\right)^b}$$

$$N_{t+1} = \frac{N_t r}{\left(1 + a N_t\right)^b}$$

 $N_{t+1} = \frac{N_t r}{\left(1 + a N_t\right)^b}$

2. Damped oscillations

3 & 4. Stable

limit cycles

Density dependence and intrinsic growth rate interact

Delayed density dependence destabilises

Delayed density dependence: many possible causes

EXTRINSIC

- Predators
- Disease

INTRINSIC

- Maternal effects
- Early life conditions
- Behaviour

Detecting density dependence

False correlations: a pitfall for the unwary

Detecting density dependence

Try measuring the demographic rates,
-add some data – looks interesting –
-but small fluctuations and large errors effectively obscure the effect.

Population size

An alternative approach: population dynamics meets behavioural ecology

The oystercatcher

A behaviour-based model

Take home messages

- Population size is determined by an interaction between intrinsic (density dependent) and extrinsic (density independent) processes.
- Density dependence usually stabilises, but can destabilise if
 - it is very strong (and reproductive rate is high);
 - it acts with a time delay
 - it acts in reverse (Allee effect)
- Density dependence is difficult to measure in real populations behaviour-based models can help.

Extreme effects of predation: island birds

Of 127 avian extinctions since 1600, 92% were island endemics; Introduced predators are held responsible for >40% of these.

Predation & stability: model oscillations

Predation interacts with other factors

Light bellied brent geese and polar bears

Coupled dynamics may not be linked directly

Canadian lynx & snowshoe hares: 10-year cycle

A causal chain...

Longer chains

A 3-year cycle in brent geese

...and wading birds too...

...also in phase with lemming population

The culprits

Disease & Parasitism: extreme effects possible

Frogs and chytrid fungal infection: some species already extinct.

BIRTH

A model of trichostrongylosis in grouse

Hudson 1992

Intrinsic effects: red grouse again A behavioural model

Time

Aggressiveness is inversely related to:

- Relatedness
- Territory size

Spatial structure

Localised density dependence in barnacle geese

Metapopulation dynamics

Metapopulation dynamics in practice Tana River primates

Sykes monkey

Red colobus

The incidence function: data requirements

The incidence function model

Probability of occupancy depends on colonisation and extinction probabilities

$$J_i = \frac{C_i}{C_i + E_i - C_i E_i}$$

Does the model work?

General principles from metapopulation models

- 1. Persistence may depend on currently unoccupied habitat
- 2. Viability is increased by:
 - More habitat overall
 - Fewer larger habitat patches
 - Greater connectivity of the matrix
 - Greater variance in patch size

Natural resource use: how does an understanding of population dynamics help to harvest sustainably?

Constant offtake

Constant proportional offtake

Population size (N)

Harvesting and the Allee effect

Population size (N)

Continued harvest, even if reduced, is catastrophic

Population size (N)

Useful conclusions from a simple model

1. Harvesting a previously untouched population will always lead to a reduction

2. The reason populations can be harvested sustainably is because they are density dependent

3. If taking a constant **number**, harvesting above MSY causes rapid extinction

4. If taking a constant **proportion**, harvesting above MSY is sustainable

5. If there is an **Allee effect**, harvesting above a threshold leads to rapid extinction, even if proportional

Take home messages

- Predation prey and host disease interactions can be destabilising
- Spatial structure allows some escape from density dependence at a local level
- Highly fragmented populations benefit from improved dispersal possibilities and variability in patch size; empty habitat is not necessarily unimportant
- Constant effort harvesting is more likely to be sustainable than a constant yield strategy.