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What is “population dynamics”?

All populations fluctuate over time; population 
dynamics is the study of causes underlying these 
fluctuations.

Why study it?

• Conservation management
• Management of biological resources
• Because it’s incredibly interesting!
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Population dynamics is about flows
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Net flows determine:
“population growth rate”
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Exponential growth
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Logistic growth
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Stochastic growth
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WYTHAM GREAT TIT STUDY
•Started by David Lack in 1947
•Over 1000 nestboxes by 1963
•Intensively studied every year
•Demography known extremely well
•Environmental effects well known
•Numerous exptal studies
•Genetics well known
•Most adults & all yg ringed
•Immigrants known
•Poor handle on emigrants
•Sink popn



Wytham Great tit Time Series (r)
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Blue & Great Tit Breeding Densities
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A little history:
are populations “regulated” or “limited”?

Is the key factor determining population size:

Extrinsic,
environmental

(Andrewartha & Birch)

Intrinsic, biotic 
(density dependence)
(Nicholson & Lack) OR

1940/50’s

Now Synthesis: both are important



Known Demographic & Environmental 
Effects in Great Tits

Survival of both Adults, Juveniles & Rate of Immigration 
from Yrn – Yrn+1 affected by Winter temp & Beech mast

CS, LD, Nestling Mass, Number Fledged & Recruitment
All affected by both GT & BT breeding densities

i.e. Year on year Population Dynamics of great tits results 
from both Environmental & Demographic stochasticity



An example of environment / density 
interaction: the Soay sheep
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Weather and density interact

Grenfell et al 1998
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“Nothing in ecology makes 
sense except in the light of  

density dependence”
(W. Sutherland, after T. Dobzhansky)



b = <1.5: Monotonic damping
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Density dependence:
simple models, complex dynamics



1. Monotonic
damping

b = c. 1.5 - 2.5: Damped oscillations
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1. Monotonic
damping

2. Damped
oscillations

b = c.2.5 - 4: Stable limit cycles
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2. Damped
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3 & 4. Stable
limit cycles

b = >4: Chaos!



Density dependence and 
intrinsic growth rate interact
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Delayed density dependence destabilises
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Delayed density dependence:
many possible causes

EXTRINSIC
- Predators
- Disease

INTRINSIC
- Maternal effects
- Early life conditions
- Behaviour



Detecting density dependence

False correlations: a pitfall for the unwary
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-Try measuring the demographic rates,
-add some data – looks interesting –
-but small fluctuations and large errors
effectively obscure the effect.

Detecting density dependence



An alternative approach:
population dynamics meets behavioural 

ecology

The oystercatcher

Stillman et al 2000a
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A behaviour-based model

Stillman et al 2000b
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Take home messages
• Population size is determined by an interaction between 

intrinsic (density dependent) and extrinsic (density 
independent) processes.

• Density dependence usually stabilises, but can destabilise if
– it is very strong (and reproductive rate is high);
– it acts with a time delay
– it acts in reverse (Allee effect)

• Density dependence is difficult to measure in real 
populations – behaviour-based models can help.



Interactions between species
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Extreme effects of predation:
island birds

Of 127 avian extinctions since 1600, 92% were island endemics;
Introduced predators are held responsible for >40% of these.
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Predation & stability:
model oscillations

Time

Po
pu

la
tio

n 
si

ze

= rN - aPN
dN
dt

Prey

= faPN - qP
dP
dt

Predator



Predation interacts with other factors
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Coupled dynamics may
not be linked directly

Canadian lynx & snowshoe hares: 10-year cycle
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A causal chain...
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Longer chains

A 3-year cycle in brent geese
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…also in phase with lemming population
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The culprits
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Disease & Parasitism:
extreme effects possible

Frogs and chytrid fungal infection:
some species already extinct.



Less severe effects:
red grouse
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SIR models and epidemiology
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A model of trichostrongylosis in grouse

Hudson 1992
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Intrinsic effects: red grouse again
A behavioural model

Mugeot et al. 2003

Density
Aggressiveness

Time

Aggressiveness is inversely related to:
- Relatedness
- Territory size



Spatial structure
Localised density dependence in barnacle geese
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Metapopulation dynamics

Occupied
patch
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patch



Metapopulation dynamics in practice
Tana River primates

Red
colobus

Crested
mangabey

Sykes
monkey
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Probability of occupancy depends on colonisation and 
extinction probabilities
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Does the model work?

0

0.2

0.4

0.6

0.8

<0.05 >=0.05
Patch area

Ex
tin

ct
io

n 
ra

te
0

0.2

0.6

1

0.01 0.1 1 10 100

Patch area

Ex
tin

ct
io

n 
ris

k

Colobus

Mangabey

The model The data



General principles from metapopulation
models 

1. Persistence may depend on currently unoccupied 
habitat

2. Viability is increased by:

- More habitat overall

- Fewer larger habitat patches

- Greater connectivity of the matrix

- Greater variance in patch size



Natural resource use:
how does an understanding of population 

dynamics help to harvest sustainably?
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Constant proportional offtake
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Useful conclusions from a simple model
1. Harvesting a previously untouched population will 
always lead to a reduction

2. The reason populations can be harvested sustainably is 
because they are density dependent

3. If taking a constant number, harvesting above MSY 
causes rapid extinction

4. If taking a constant proportion, harvesting above MSY 
is sustainable

5. If there is an Allee effect, harvesting above a threshold 
leads to rapid extinction, even if proportional



Take home messages

• Predation – prey and host – disease interactions can be 
destabilising

• Spatial structure allows some escape from density 
dependence at a local level

• Highly fragmented populations benefit from improved 
dispersal possibilities and variability in patch size; empty 
habitat is not necessarily unimportant

• Constant effort harvesting is more likely to be sustainable 
than a constant yield strategy.


