Overview of Population Dynamics
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What Is “population dynamics”?

All populations fluctuate over time; population
dynamics is the study of causes underlying these
fluctuations.

Why study 1t?

« Conservation management
* Management of biological resources
e Because It’s incredibly interesting!
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Population dynamics is about flows

Birth
&

Immigration
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Net flows determine:
“population growth rate”
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Population size (N)
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Exponential growth
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Population size (N)
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WY THAM GREAT TIT STUDY

eStarted by David Lack in 1947
*Over 1000 nestboxes by 1963
sIntensively studied every year
Demography known extremely well
*Environmental effects well known
Numerous exptal studies
*Genetics well known
Most adults & all yg ringed
slmmigrants known

*Poor handle on emigrants
*SIink popn




Wytham Great tit Time Series (r)
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Blue & Great Tit Breeding Densities
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A little history:
are populations “regulated” or “limited”?

Is the key factor determining population size:

1940/50’s
Intrinsic, biotic Extrinsic,
(density dependence) O R environmental
(Nicholson & Lack) (Andrewartha & Birch)

9

Now Synthesis: both are important



Known Demographic & Environmental
Effects in Great Tits

Survival of both Adults, Juveniles & Rate of Immigration
from Yrn — Yrn+1 affected by Winter temp & Beech mast

CS, LD, Nestling Mass, Number Fledged & Recruitment
All affected by both GT & BT breeding densities

l.e. Year on year Population Dynamics of great tits results
from both Environmental & Demographic stochasticity



An example of environment / density
Interaction: the Soay sheep
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Weather and density interact

I\|t+1 (lOg)

Grenfell et al 1998



“Nothing in ecology makes
sense except in the light of
density dependence”

(W. Sutherland, after T. Dobzhansky)



Density dependence:
simple models, complex dynamics
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b = >4: Chaos!
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Density dependence and
Intrinsic growth rate interact
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Delayed density dependence destabilises
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Delayed density dependence:
many possible causes

EXTRINSIC
- Predators
- Disease

INTRINSIC
- Maternal effects
- Early life conditions
- Behaviour

Mean weight of offspring
bom to cohort (kg)
h

Ln
o4

Cohort birth weight (kg)



Detecting density dependence

False correlations: a pitfall for the unwary
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Population growth rate
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Detecting density dependence

-Try measuring the demographic rates,
-add some data — looks interesting —
-but small fluctuations and large errors
effectively obscure the effect.

Demographic rate

Population size



An alternative approach:
population dynamics meets behavioural

ecology
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Competitor density

The oystercatcher

Stillman et al 2000a



A behaviour-based model

Foraging
behaviour

>

Patch
selection

Foraging
success

l

Individual demographic
performance
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Population
dynamics

% mortality
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Take home messages

» Population size is determined by an interaction between
Intrinsic (density dependent) and extrinsic (density
Independent) processes.

» Density dependence usually stabilises, but can destabilise if
— 1t Is very strong (and reproductive rate is high);
— It acts with a time delay
— 1t acts in reverse (Allee effect)

* Density dependence is difficult to measure in real
populations — behaviour-based models can help.



Interactions between species

Effects of A on B

Effects of B on A

-1 -
+ Mutualism Predation /
Parasitism
- Competition




Extreme effects of predation:
Island birds

Of 127 avian extinctions since 1600, 92% were island endemics;
Introduced predators are held responsible for >40% of these.



Predation & stability:
model oscillations
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Predation interacts with other factors

Light bellied brent geese and polar bears
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Coupled dynamics may
not be linked directly

Canadian lynx & snowshoe hares: 10-year cycle
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Relative abundance

A causal chain...
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L_onger chains

A 3-year cycle in brent geese
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..and wading birds too...

Brent goose
Sanderling

\
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..also In phase with lemming population

Lemming
population

70 75 80 85
Year



The culprits
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Disease & Parasitism:
extreme effects possible

Frogs and chytrid fungal infection:
some species already extinct.




|_ess severe effects:
red grouse
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SIR models and epidemiology
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A model of trichostrongylosis in grouse
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Intrinsic effects: red grouse again
A behavioural model

Aggressiveness
Density

Time

Aggressiveness is inversely related to:
- Relatedness

- Territory size
Mugeot et al. 2003



Population (1000’s)

Spatial structure

Localised density dependence in barnacle geese

%91 The population grew...
10 1 -
P
=
O
S 0.5
e
o
al
0
1 . | 0
1957 1967 1977




...and grew...
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Metapopulation dynamics

Empty

Occupied patch




Metapopulation dynamics In practice

Tana River primates
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Distance to nearest neighbour

The incidence function:
data requirements
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p(Colonisation)

The incidence function model

Probability of occupancy depends on colonisation and

extinction probabilities

Ci

‘]i:
Ci + E; —CjE;

Patch connectivity

p(Extinction)

E; = min { eX ,1}
A

Patch area



Extinction risk

1'\

Does the model work?

The model The data
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Extinction rate
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General principles from metapopulation
models

1. Persistence may depend on currently unoccupied
habitat

2. Viability Is increased by:
- More habitat overall
- Fewer larger habitat patches
- Greater connectivity of the matrix

- Greater variance in patch size



Natural resource use:
how does an understanding of population
dynamics help to harvest sustainably?

Population growth rate (dN/dt)

Population size (N)



Growth / harvest rate

Constant offtake

MSY

Population size (N)



Constant proportional offtake

Growth / harvest rate

Population size (N)



Harvesting and the Allee effect

Growth / harvest rate

Population size (N)



Continued harvest, even If reduced,
IS catastrophic

Growth / harvest rate

Population size (N)



Useful conclusions from a simple model

1. Harvesting a previously untouched population will
always lead to a reduction

2. The reason populations can be harvested sustainably is
because they are density dependent

3. If taking a constant number, harvesting above MSY
causes rapid extinction

4. If taking a constant proportion, harvesting above MSY
IS sustainable

5. If there 1s an Allee effect, harvesting above a threshold
leads to rapid extinction, even if proportional



Take home messages

Predation — prey and host — disease interactions can be
destabilising

Spatial structure allows some escape from density
dependence at a local level

Highly fragmented populations benefit from improved
dispersal possibilities and variability in patch size; empty
habitat is not necessarily unimportant

Constant effort harvesting is more likely to be sustainable
than a constant yield strategy.



